skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mircovich, Matthew_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A theoretical model that can be used to simultaneously fit the I–V characteristics and spectral optical responsivity of Ge-like pin diodes is described in detail and validated experimentally using specially fabricated Ge- and Ge1−ySny devices. The model combines a numerical solution of the basic semiconductor transport equations with a rigorous calculation of the optical generation rate that accounts for multiple reflections in the device structure multilayers. The results can be used to quantify the reduction of photocurrent associated with recombination centers for full optimization of the device structure. 
    more » « less
  2. A practical quantitative model is presented to account for the I–V characteristics of pin diodes based on epitaxial Ge-like materials. The model can be used to quantify how the different material properties and recombination mechanisms affect the diode performance. The importance of dislocations, non-passivated defects, and residual intrinsic layer doping in determining the qualitative shape of the I–V curves is discussed in detail. Examples are shown covering literature diodes as well as diodes fabricated with the purpose of validating the theoretical effort. 
    more » « less